Artificial light-triggered smart nanochannels relying on optoionic effects

نویسندگان

چکیده

The construction and exploration of light-triggered nanochannels provides an opportunity for the effective use light to meet ever-increasing global energy demand possibility study potential mechanism biological conversion information through nanochannels. Photoharvesting is one most fundamental important processes plenty room future devices in energy-harvesting systems development photodetector biomimetic vision systems. Here, we provide a comprehensive overview precise design strategies, interpret mechanisms optoionic effect, discuss advances limitations strategies guide smart Light-triggered based on effects are currently explored fields nanoconfined ion management photoelectric because their noninvasive external field control, intelligent responses, efficient photoelectric-conversion properties. Recent progress generating chemical changes or electrochemical gradients with manipulating migration behavior ions channels summarized here, focus involved. tremendous challenges faced by have been raised promising prospected. ultracompact nanostructure confined ion-transmission nanochannels1Kavokine N. Marbach S. Siria A. Bocquet L. Ionic Coulomb blockade as fractional Wien effect.Nat. Nanotechnol. 2019; 14: 573-578https://doi.org/10.1038/s41565-019-0425-yCrossref PubMed Scopus (18) Google Scholar, 2Zhu Z. Wang D. Tian Y. Jiang Ion/molecule transportation nanopores nanochannels: from critical principles diverse functions.J. Am. Chem. Soc. 141: 8658-8669https://doi.org/10.1021/jacs.9b00086Crossref (89) 3Bocquet Charlaix E. Nanofluidics, bulk interfaces.Chem. Rev. 2010; 39: 1073-1095https://doi.org/10.1039/b909366bCrossref (805) 4Feng J. Graf M. Liu K. Ovchinnikov Dumcenco Heiranian Nandigana V. Aluru N.R. Kis Radenovic Single-layer MoS2 nanopower generators.Nature. 2016; 536: 197-200https://doi.org/10.1038/nature18593Crossref (429) Scholar offer considerable opportunities well applications biosensors,5Zhu Duan X. Li Q. Wu R. B. Low-noise nanopore enables in-situ label-free tracking trigger-induced DNA molecular machine at single-molecular level.J. 2020; 142: 4481-4492https://doi.org/10.1021/jacs.0c00029Crossref (17) 6Ding Gao P. Ma Xia F. Biomolecule-functionalized solid-state nanochannels/nanopores: features techniques.Small. 15: e1804878https://doi.org/10.1002/smll.201804878Crossref (46) 7Reta Michelmore Saint C.P. Prieto-Simon Voelcker N.H. Label-free bacterial toxin detection water supplies using porous silicon nanochannel sensors.ACS Sens. 4: 1515-1523https://doi.org/10.1021/acssensors.8b01670Crossref (16) 8Mayne Lin C.Y. Christie S.D.R. Siwy Z.S. Platt characterization multifunctional aptamer Nano. 2018; 12: 4844-4852https://doi.org/10.1021/acsnano.8b01583Crossref (39) 9Xu Quan Chen W. Zhang Yan H. Tan Zeng Yang G. A chirality/light dual-responsive calixarene-functionalized gold surface separation naproxen enantiomers.ChemPlusChem. 84: 907-912https://doi.org/10.1002/cplu.201900228Crossref (5) 10Chen Si Tang Z.T. Hou J.L. Chiral selective transmembrane transport amino acids artificial channels.J. 2013; 135: 2152-2155https://doi.org/10.1021/ja312704eCrossref (211) ionic separation,11Wang He Shi Nunes Two-dimensional membranes separations.Chem. 49: 1071-1089https://doi.org/10.1039/c9cs00751bCrossref (52) 12Lin Polster J.W. Charge inversion calcium gating mixtures nanopores.J. 2925-2934https://doi.org/10.1021/jacs.9b11537Crossref (15) 13Liu Pan Zheng Xu Liao Ko et al.A sensitive specific nanosensor monitoring extracellular potassium levels brain.Nat. 321-330https://doi.org/10.1038/s41565-020-0634-4Crossref (21) 14Zhao X.P. S.S. Younis M.R. X.H. C. Asymmetric nanochannel-Ionchannel hybrid ultrasensitive copper blood.Anal. 90: 896-902https://doi.org/10.1021/acs.analchem.7b03818Crossref (50) conversion.15Zhang Zhu Qian Wen Improved osmotic heterogeneous membrane boosted three-dimensional hydrogel interface.Nat. Commun. 11: 875https://doi.org/10.1038/s41467-020-14674-6Crossref (33) 16Zou Ouyang Yu Qu bionic stretchable nanogenerator underwater sensing harvesting.Nat. 10: 2695https://doi.org/10.1038/s41467-019-10433-4Crossref (145) 17Lin Combs Su Y.S. Yeh L.H. Rectification concentration polarization mesopores leads high conductance diodes performance power.J. 3691-3698https://doi.org/10.1021/jacs.8b13497Crossref (70) 18Xu Lavan D.A. Designing cells harness gradient.Nat. 2008; 3: 666-670https://doi.org/10.1038/nnano.2008.274Crossref (115) 19Schroeder T.B.H. Guha Lamoureux VanRenterghem Sept Shtein Mayer An electric-eel-inspired soft power source stacked hydrogels.Nature. 2017; 552: 214-218https://doi.org/10.1038/nature24670Crossref (163) 20Siria Poncharal Biance A.L. Fulcrand Blase Purcell S.T. Giant measured single boron nitride nanotube.Nature. 494: 455-458https://doi.org/10.1038/nature11876Crossref (552) These extremely small nanodevices great importance biotechnology sensitivity specificity. In addition, they can also be used mimic functions counterparts, such ion, water, glucose channels.21Nazari Davoodabadi Huang Luo T. Ghasemi Transport phenomena Nano/molecular confinements.ACS 16348-16391https://doi.org/10.1021/acsnano.0c07372Crossref Nowadays, various nanochannels, including polymer nanopores,22Gilles Barboiu Highly K(+) channels: example selectivity-induced potential.J. 138: 426-432https://doi.org/10.1021/jacs.5b11743Crossref (63) 23Sakai Lista Kel O. Sakurai Emery Mareda Vauthey Matile Self-organizing surface-initiated polymerization: facile access complex functional systems.J. 2011; 133: 15224-15227https://doi.org/10.1021/ja203792nCrossref (86) 24Zhang Fundamental studies practical bio-inspired nanochannels.Nano Today. 61-81https://doi.org/10.1016/j.nantod.2015.11.001Crossref (169) two-dimensional layered nanostructures,25Fang Kroenlein Riccardi Smolyanitsky mechanosensitive graphene-embedded crown ethers.Nat. Mater. 18: 76-81https://doi.org/10.1038/s41563-018-0220-4Crossref (38) Scholar,26Sisson Shah Bhosale Synthetic pores (2004-2005).Chem. 2006; 35: 1269-1286https://doi.org/10.1039/b512423aCrossref (189) nanofilms formed self-assembly nanoparticles (NPs),27Li Lu Easton C.D. Hill Thornton A.W. J.Z. al.Fast fluoride conduction sub-1-nanometer metal-organic framework channels.Nat. 2490https://doi.org/10.1038/s41467-019-10420-9Crossref (55) Scholar,28Cai Hao Sun Colombari F.M. de Moura A.F. Silva M.C. Carneiro-Neto E.B. al.Self-assembled arrays that allow rectification nanoscale selectivity.Angew. Int. Ed. Engl. 58: 17418-17424https://doi.org/10.1002/anie.201909447Crossref (4) heterostructures different combinations materials,29Zhang Ding Ji Guo electrokinetic proton 2D nanofluidic heterojunctions.ACS 13: 4238-4245https://doi.org/10.1021/acsnano.8b09285Crossref (32) 30Zhang Guan Jin Controllable surface-charged graphene oxide membrane.Nat. 1253https://doi.org/10.1038/s41467-019-09286-8Crossref (130) 31Hou Building symmetric asymmetric modification.Angew. 2012; 51: 5296-5307https://doi.org/10.1002/anie.201104904Crossref (180) fabricated respond stimuli, pH,32Zhou Cheng Nanochannel templated iridium nanostructures wide-range pH solutions human skin surface.Anal. 92: 3844-3851https://doi.org/10.1021/acs.analchem.9b05289Crossref (2) temperature,33Chen Yao Bionic thermoelectric response nanochannels.J. 8608-8615https://doi.org/10.1021/jacs.9b03569Crossref (25) light,34Xiao Kong X.-Y. Xie Construction application photoresponsive Photochem. Photobiol. 26: 31-47https://doi.org/10.1016/j.jphotochemrev.2015.12.002Crossref 35Lu Xiang Photoelectric frequency bioinspired bacteriorhodopsin/alumina nanosystem.Adv. 28: 9851-9856https://doi.org/10.1002/adma.201603809Crossref (19) 36Rao light-powered bio-capacitor modulation.Adv. 2014; 5846-5850https://doi.org/10.1002/adma.201401321Crossref (41) voltage.37Wang Kang Simon G.P. Voltage-gated Ion sub-1 nm channels.ACS 11793-11799https://doi.org/10.1021/acsnano.9b05758Crossref Scholar,38James Kalinin Y.V. Chan C.C. Randhawa J.S. Gaevski Gracias D.H. semiconducting conical metal nanoparticle-assisted plasma etching.Nano Lett. 3437-3442https://doi.org/10.1021/nl300673rCrossref (48) Ongoing research making increasing investigate underlying organisms nanochannels.39Nagel Szellas Huhn Kateriya Adeishvili Berthold Ollig Hegemann Bamberg Channelrhodopsin-2, directly light-gated cation-selective channel.Proc. Natl. Acad. Sci. USA. 2003; 100: 13940-13945https://doi.org/10.1073/pnas.1936192100Crossref (1695) processes, which living transform photons into (electro)chemical energy. Specifically, chlorophyll-based photoharvesting system, solar absorbed cause electronic excitation, gradient across cell maintain normal life activities.40Xie Bakker Creating light: concepts conversion.Phys. Phys. 16: 19781-19789https://doi.org/10.1039/c4cp02566kCrossref This particularly attractive its optical mechanism.35Lu Scholar,41Huang Dong Photo-responsive polymeric micelles.Soft Matter. 6121-6138https://doi.org/10.1039/c4sm00871eCrossref (129) 42Zhan Peng Song butterfly-inspired hierarchical light-trapping structure towards high-performance polarization-sensitive perovskite photodetector.Angew. 16456-16462https://doi.org/10.1002/anie.201908743Crossref 43Calzaferri Méallet-Renault Brühwiler Pansu Dolamic I. Dienel Adler Kunzmann dye-nanochannel antenna materials harvesting, trapping.ChemPhysChem. 580-594https://doi.org/10.1002/cphc.201000947Crossref (77) Nature sustains these allowing them absorb conversion. Therefore, it explore internal this process achieve full molecule delivery, separation, conversion, sensing.44Gust Moore T.A. Solar fuels via photosynthesis.Acc. Res. 2009; 42: 1890-1898https://doi.org/10.1021/ar900209bCrossref (1521) To date, scientists successfully simulated each atom light-harvesting photosynthetic bacteria, permitting complete description metabolism simple bioenergetic organelles modern computational methods,45Singharoy Maffeo Delgado-Magnero K.H. Swainsbury D.J.K. Sener Kleinekathöfer U. Vant Nguyen Hitchcock Isralewitz al.Atoms phenotypes: cellular metabolism.Cell. 179: 1098-1111.e23https://doi.org/10.1016/j.cell.2019.10.021Abstract Full Text PDF (35) potentially opens pathway recent years, extensive has directed toward mimicking natural channelrhodopsin-2 (ChR2), bacteriorhodopsin (bR), so on, construct nanochannels.34Xiao Scholar,46Li X.Y. Xiao Light-controlled DNA-based channels.Angew. 55: 15637-15641https://doi.org/10.1002/anie.201609161Crossref (60) Scholar,47Vullev V.I. From biomimesis bioinspiration: what’s benefit applications?.J. 2: 503-508https://doi.org/10.1021/jz1016069Crossref (51) systems, generate under manipulation precisely regulate ion-transport behavior, both spatially temporally, remote noncontact stimulation environment. perspective article, review achievements in-depth analysis effects. phototriggered classified three categories how generated: photoisomer-controlled transport, photochemically induced transmission, photoexcitation-driven (Figure 1). For types artificial-light-triggered strategy, It should noted supramolecular artificially derived protein not addressed review. Photoinduced isomerization allows mechanical energy, triggers rearrangement structural units photoisomeric molecules. considered model.48Eskandarloo Kierulf Abbaspourrad Light-harvesting synthetic Nano- micromotors: review.Nanoscale. 9: 12218-12230https://doi.org/10.1039/c7nr05166bCrossref Scholar,49Wang Photochromism nanosystems: lighting up nanoworld.Chem. 47: 1044-1097https://doi.org/10.1039/c7cs00630fCrossref (262) Common molecules include azobenzene (Azo), spiropyrans (SP), spirooxazine, all functionalized photoisomerized 2).50Bertarelli Bianco D'Amore Gallazzi Zerbi Effect substitution change refractive index dithienylethenes: ellipsometric study.Adv. Funct. 2004; 357-363https://doi.org/10.1002/adfm.200304414Crossref (83) 51Alfimov M.V. Fedorova O.A. Gromov S.P. Photoswitchable receptors.J. 158: 183-198https://doi.org/10.1016/S1010-6030(03)00033-9Crossref (142) 52De Poli Zawodny Quinonero Lorch Webb S.J. Clayden Conformational photoswitching peptide foldamer bound within phospholipid bilayer.Science. 352: 575-580https://doi.org/10.1126/science.aad8352Crossref (85) photoisomerization properties prepared exploiting direct indirect interaction between photoisomers.34Xiao Scholar,40Xie strategy photoisomerization-guided divided concrete parts according transmission influenced photoisomer-induced steric hindrance, ion-channel involving host-guest interactions body literature suggests supermolecules Azo effectively control mass-transfer optically switchable conformational (either trans cis) irradiation.53Liu Dunphy D.R. Atanassov Bunge S.D. López Boyle T.J. Brinker C.J. Photoregulation mass azobenzene-modified nanoporous membrane.Nano 551-554https://doi.org/10.1021/nl0350783Crossref (316) 54Bhosale Sisson Talukdar Fürstenberg Banerji Bollot Röger Würthner al.Photoproduction pi-stacked fluorophore scaffolds lipid bilayers.Science. 313: 84-86https://doi.org/10.1126/science.1126524Crossref (327) 55Harada Kojima porphyrin nanochannel: formation cationic protonated saddle-distorted inclusion behavior.Chem. (Camb). 2005; 6: 716-718https://doi.org/10.1039/b414483jCrossref stable tolerate changeable environment well, but synthesis often requires steps. usually accompanied disadvantages long time low yield, greatly limit photoisomer On other hand, embedded perform photogated when ultraviolet (UV) visible light,56Banghart Borges Isacoff Trauner Kramer R.H. Light-activated neuronal firing.Nat. Neurosci. 7: 1381-1386https://doi.org/10.1038/nn1356Crossref (537) 57Koçer Walko Meijberg Feringa B.L. light-actuated nanovalve channel protein.Science. 309: 755-758https://doi.org/10.1126/science.1114760Crossref (410) 58Hoppmann Seedorff Richter Fabian Schmieder Rück-Braun Beyermann Light-directed binding biologically relevant beta-sheet.Angew. 48: 6636-6639https://doi.org/10.1002/anie.200901933Crossref implies photoisomers channels. Unfortunately, fragility resolved, further limits research. Together, insights regulation modified photoisomers, illumination. main experimental two effect: light-regulated light-driven transport. process, originally traveled along (usually driven electric field) blocked enhanced action light. Typically, modify inner nanochannel. When thermally stable, behaves relatively hydrophobic interface blocks traveling ions. Upon exposure UV light, transformed more polar form, becomes hydrophilic, transported membrane. Light-regulated achieved varying wettability irradiation. Smirnov’s group designed SP-modified alumina (AAO) membranes.59Vlassiouk Park Vail S.A. Gust Smirnov Control wetting photochromic spiropyran: light-controlled valve electrical switch.Nano 1013-1017https://doi.org/10.1021/nl060313dCrossref (206) adjusted mobility, was evident impedance and, therefore, affected (Figures 3A 3B ). switch hydrophilic applied many photoisomer-modified those polycarbonate (PC), polyethylene terephthalate (PET), membranes, similar irradiation.60Zhang Fan Zhai Light cooperative diode spiropyran-functionalized nanochannel.Adv. 24: 2424-2428https://doi.org/10.1002/adma.201104536Crossref (121) 61Baumann Courten Wolf Rossi R.M. Scherer L.J. Light-responsive caffeine transfer polycarbonate.ACS Appl. Interfaces. 5: 5894-5897https://doi.org/10.1021/am401218eCrossref 62Wang Bohaty A.K. Zharov White H.S. Photon gated glass electrode.J. 128: 13553-13558https://doi.org/10.1021/ja064274jCrossref (148) 63Wang Bo Colloidal lettuce-like sulfide light-gating nanochannels.ACS 3606-3613https://doi.org/10.1021/acsnano.5b08079Crossref (24) contrast, altering charge efficiently affect migrating ions, changing intensity current ratio signal thus, achieving example, Jiang’s utilized CuxS NPs loaded SP combined AAO form nanochannels.63Wang Before irradiation, NP presenting “on” state. However, after irradiation underwent ring-opening reaction merocyanine structure, caused significant increase surrounding NPs. thus generated electrostatic effects, causes closed (“off”) state 3C 3D). Analogously, simultaneous photoisomer-modulated nanochannels.64Chun K.Y. Son Y.J. Jo Han C.S. Stomata-inspired photomechanical composites.Small. 14e1703618https://doi.org/10.1002/smll.201703618Crossref Scholar,65Wang Pei Feng Stimuli-responsive nano-systems pillar[n]arenes related applications.J. 7656-7675https://doi.org/10.1039/c9tb01913hCrossref acts pump drive directional resting (no field). Notably, colleagues first fairly thick (∼25 μm) membrane, converting then photocurrent, transport.66Xie Crespo G.A. Mistlberger Photocurrent generation liquid 202-207https://doi.org/10.1038/nchem.1858Crossref (97) Scholar,67Xie proton-coupled electron reactions.J. 136: 7857-7860https://doi.org/10.1021/ja503491kCrossref Throughout whole illuminated opposite sides protons electrolyte taken merocyanine, carried released side, resulting net flux. backside converted illumination enabling cyclic process. During continuous illumination, system produces light-induced flux efficiency ∼0.12% o

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of breeding density, feeding cycle, and light environment on the artificial culture of Poecilobdella manillensis

To provide a scientific basis for artificial culture, the effects of different breeding densities, feeding cycles, and light environments on the growth regulation of Poecilobdella manillensis were studied. After P. manillensis were cultured at breeding densities of 250 ~ 3250 leeches m-2; feeding cycles of 2 ~ 16 days; and a light environment with noise or a light-free environment without noise...

متن کامل

Effects of wall roughness on flow in nanochannels.

Nonequilibrium molecular dynamics simulation is applied to investigate the effect of periodic wall roughness on the flow of liquid argon through krypton nanochannels. The effect of the length of a rectangular protrusion on the flow is investigated and compared to the case of nanochannels with flat walls. The results show a clear trapping of fluid atoms inside the rectangular cavities that are f...

متن کامل

Effects of jamming on nonequilibrium transport times in nanochannels.

Many biological channels perform highly selective transport without direct input of metabolic energy and without transitions from a "closed" to an "open" state during transport. Mechanisms of selectivity of such channels serve as an inspiration for creation of artificial nanomolecular sorting devices and biosensors. To elucidate the transport mechanisms, it is important to understand the transp...

متن کامل

Smart Policies for Artificial Intelligence

Over the past few years, developments in artificial intelligence (AI) have captured the imagination of tens of millions, if not billions, of people around the world. You will have seen countless news stories about the proliferation of driverless cars and AI systems beating the world champions at Jeopardy! and Go – not to mention science fiction stories about more advanced, if often implausible,...

متن کامل

Potential Biological and Ecological Effects of Flickering Artificial Light

Organisms have evolved under stable natural lighting regimes, employing cues from these to govern key ecological processes. However, the extent and density of artificial lighting within the environment has increased recently, causing widespread alteration of these regimes. Indeed, night-time electric lighting is known significantly to disrupt phenology, behaviour, and reproductive success, and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Chem

سال: 2021

ISSN: ['2451-9308', '2451-9294']

DOI: https://doi.org/10.1016/j.chempr.2021.04.008